Survey on dairy farmers' management practices for and satisfaction with the detection of clinical mastitis by automatic milking systems in Bavaria, Germany.


  • Mathias Bausewein Bavarian Animal Health Services, Senator-Gerauer-Str, 23, 85586 Poing, Germany; Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Sonnenstraße 16, 85764 Oberschleissheim, Germany
  • Rolf Mansfeld Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Sonnenstraße 16, 85764 Oberschleissheim, Germany
  • M. G. Doherr Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
  • J. Harms Institute for Agricultural Engineering and Animal Husbandry, Bavarian State Research Centre for Agriculture, Prof.-Dürrwaechter-Platz 5, 85586 Poing-Grub, Germany
  • U. S. Sorge Bavarian Animal Health Services, Senator-Gerauer-Str, 23, 85586 Poing, Germany


milking robots, mastitis monitoring, questionnaire, dairy cows


The objectives of this study were to identify (i) management practices for the detection of clinical mastitis (CM) in dairy farms with automatic milking systems (AMS), and (ii) the farmers’ personal assessment of their work with the AMS as well as the mastitis detection performance of the AMS through an online survey. Complete responses of 47 of the 108 contacted Bavarian dairy producers were available for analysis. Warning lists of AMS, highlighting cows with potential udder health problems, were checked twice a day by 68% and once per day or less frequently by 27% of the farmers. Checking warning lists reportedly took five minutes per day (median). Besides the presence of flakes on the milk filter (75%), data from the AMS (78%) was another important factor that farmers considered for their decision to assess an indicated cow in the barn. Electrical conductivity (EC; 50%), milk color/ blood presence (49%), and, if available, somatic cell count (66%) were selected most frequently as “extremely important” from provided options in the survey. Flagged cows were commonly checked within 12 hours of the alert (23%) in the barn. Most commonly, these cows were assessed by organoleptic examination of the udder and/or the first milk strains (50%). Most farmers (68%) agreed with the statement of being very satisfied with the detection performance of CM by the AMS. However, almost half of the farmers (44%) perceived the number of false-positively flagged cows by the AMS as too high. While farmers were overall positive towards the detection of CM in AMS, some management factors such as the frequency of monitoring the warning list and cows in the barn could be intensified.


Bauman CA, Barkema HW, Dubuc J, Keefe GP, Kelton DF. Identifying management and disease priorities of Canadian dairy industry stakeholders. J Dairy Sci. 2016;99:10194–203. doi:10.3168/jds.2016-11057.

Ruegg PL. Practical Food Safety Interventions for Dairy Production. J Dairy Sci. 2003;86:E1-E9. doi:10.3168/jds.S0022-0302(03)74034-X.

Chetroiu R, Cișmileanu AE, Cofas E, Petre IL, Rodino S, Dragomir V, et al. Assessment of the Relations for Determining the Profitability of Dairy Farms, A Premise of Their Economic Sustainability. Sustainability. 2022;14:7466. doi:10.3390/su14127466.

Fogsgaard KK, Bennedsgaard TW, Herskin MS. Behavioral changes in freestall-housed dairy cows with naturally occurring clinical mastitis. J Dairy Sci. 2015;98:1730–8. doi:10.3168/jds.2014-8347.

Sora VM, Panseri S, Nobile M, Di Cesare F, Meroni G, Chiesa LM, Zecconi A. Milk Quality and Safety in a One Health Perspective: Results of a Prevalence Study on Dairy Herds in Lombardy (Italy). Life (Basel) 2022; 25:786. doi:10.3390/life12060786.

Halasa T, Huijps K, Østerås O, Hogeveen H. Economic effects of bovine mastitis and mastitis management: a review. Vet Q. 2007;29:18–31. doi:10.1080/01652176.2007.9695224.

Jensen DB, Hogeveen H, Vries A de. Bayesian integration of sensor information and a multivariate dynamic linear model for prediction of dairy cow mastitis. J Dairy Sci. 2016;99:7344–61. doi:10.3168/jds.2015-10060.

The European Parliament and the Council of the European Union. Corrigendum to Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off. J. Eur. Union. 2004;L 226:22–82.

Barkema HW, Keyserlingk MAG von, Kastelic JP, Lam TJGM, Luby C, Roy J-P, et al. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J Dairy Sci. 2015;98:7426–45. doi:10.3168/jds.2015-9377.

Hansen BG, Stræte EP. Dairy farmers’ job satisfaction and the influence of automatic milking systems. NJAS: Wageningen Journal of Life Sciences. 2020;92:1–13. doi:10.1016/j.njas.2020.100328.

Rutten CJ, Velthuis AGJ, Steeneveld W, Hogeveen H. Invited review: sensors to support health management on dairy farms. J Dairy Sci. 2013;96:1928–52. doi:10.3168/jds.2012-6107.

LKV Bayern. Milchleistungsprüfung in Bayern. 2020. Accessed 2 Jul 2022.

Hogeveen H, Ouweltjes W. Sensors and management support in high-technology milking. J Anim Sci. 2003;81 Suppl 3:1–10. doi:10.2527/2003.81suppl_31x.

Jacobs JA, Siegford JM. Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare. J Dairy Sci. 2012;95:2227–47. doi:10.3168/jds.2011-4943.

Viguier C, Arora S, Gilmartin N, Welbeck K, O’Kennedy R. Mastitis detection: current trends and future perspectives. Trends Biotechnol. 2009;27:486–93. doi:10.1016/j.tibtech.2009.05.004.

Khatun M, Thomson PC, García SC, Bruckmaier RM. Suitability of milk lactate dehydrogenase and serum albumin for pathogen-specific mastitis detection in automatic milking systems. J Dairy Sci. 2022;105:2558–71. doi:10.3168/jds.2021-20475.

Bausewein M, Mansfeld R, Doherr MG, Harms J, Sorge US. Sensitivity and Specificity for the Detection of Clinical Mastitis by Automatic Milking Systems in Bavarian Dairy Herds. Animals (Basel) 2022;12:2131.

Hogeveen H, Kamphuis C, Steeneveld W, Mollenhorst H. Sensors and clinical mastitis - the quest for the perfect alert. Sensors (Basel). 2010;10:7991–8009. doi:10.3390/s100907991.

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz. Bekanntmachung zur Durchführung von Artikel 3 Absatz 1 in Verbindung mit Anhang III Abschnitt IX Kapitel I der Verordnung (EG) Nr. 853/2004 mit spezifischen Hygienevorschriften für Lebensmittel tierischen Ursprungs (ABl. L 226 vom 25.6.2004, S. 22) hinsichtlich der Anwendung bestimmter Maßnahmen in Milcherzeugungsbetrieben mit automatischen Melkverfahren vom 04.09.2021; BAnz AT 18.09.2012 B3.1- 3.

Mollenhorst H, Rijkaart LJ, Hogeveen H. Mastitis alert preferences of farmers milking with automatic milking systems. J Dairy Sci. 2012;95:2523–30. doi:10.3168/jds.2011-4993.

Neijenhuis F, Heinen J, Hogeveen H. Automatisch melken: risicofactoren voor de uiergezondheid - Automatic milking: risk factors for udder health, report 257 (in Dutch). Wageningen UR Livestock Research. Lelystad, Netherlands; 2009.

Likert R. A technique for the measurement of attitudes. Archives of psychology. 1932; 140:5-55.

van Mol C. Improving web survey efficiency: the impact of an extra reminder and reminder content on web survey response. International Journal of Social Research Methodology. 2017;20:317–27. doi:10.1080/13645579.2016.1185255.

Karttunen JP, Rautiainen RH, Lunner-Kolstrup C. Occupational Health and Safety of Finnish Dairy Farmers Using Automatic Milking Systems. Front Public Health. 2016;4:147. doi:10.3389/fpubh.2016.00147.

Robbers L, Bijkerk HJC, Koets AP, Benedictus L, Nielen M, Jorritsma R. Survey on Colostrum Management by Dairy Farmers in the Netherlands. Front Vet Sci. 2021;8:656391. doi:10.3389/fvets.2021.656391.

Edwards P, Roberts I, Clarke M, Diguiseppi C, Pratap S, Wentz R, Kwan I. Increasing response rates to postal questionnaires: systematic review. BMJ. 2002;324:1183. doi:10.1136/bmj.324.7347.1183.

Laguilles JS, Williams EA, Saunders DB. Can Lottery Incentives Boost Web Survey Response Rates? Findings from Four Experiments. Res High Educ. 2011;52:537–53. doi:10.1007/s11162-010-9203-2.

Wensing M, Schattenberg G. Initial nonresponders had an increased response rate after repeated questionnaire mailings. J Clin Epidemiol. 2005;58:959–61. doi:10.1016/j.jclinepi.2005.03.002.

Norberg E, Hogeveen H, Korsgaard IR, Friggens NC, Sloth K, Løvendahl P. Electrical Conductivity of Milk: Ability to Predict Mastitis Status. J Dairy Sci. 2004;87:1099–107. doi:10.3168/jds.S0022-0302(04)73256-7.

Brennecke J, Falkenberg U, Wente N, Krömker V. Are Severe Mastitis Cases in Dairy Cows Associated with Bacteremia?. Animals (Basel) 2021;11:410. doi:10.3390/ani11020410.

Rollin E, Dhuyvetter KC, Overton MW. The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Preventive Veterinary Medicine. 2015;122:257–64. doi:10.1016/j.prevetmed.2015.11.006.

Blum SE, Heller ED, Leitner G. Long term effects of Escherichia coli mastitis. Vet J. 2014;201:72–7. doi:10.1016/j.tvjl.2014.04.008.

Steeneveld W, van der Gaag LC, Ouweltjes W, Mollenhorst H, Hogeveen H. Discriminating between true-positive and false-positive clinical mastitis alerts from automatic milking systems. J Dairy Sci. 2010;93:2559–68. doi:10.3168/jds.2009-3020.

Deng Z, Lam TJGM, Hogeveen H, Spaninks M, Heij N, Postema M, et al. Antimicrobial use and farmers’ attitude toward mastitis treatment on dairy farms with automatic or conventional milking systems. J Dairy Sci. 2020;103:7302–14. doi:10.3168/jds.2019-17960.

Hamilton AW, Davison C, Tachtatzis C, Andonovic I, Michie C, Ferguson HJ, et al. Identification of the Rumination in Cattle Using Support Vector Machines with Motion-Sensitive Bolus Sensors. Sensors (Basel) 2019; 19:1165. https://

Steeneveld W, Hogeveen H. Characterization of Dutch dairy farms using sensor systems for cow management. J Dairy Sci. 2015;98:709–17. doi:10.3168/jds.2014-8595.

Sørensen LP, Bjerring M, Løvendahl P. Monitoring individual cow udder health in automated milking systems using online somatic cell counts. J Dairy Sci. 2016;99:608–20. doi:10.3168/jds.2014-8823.

Khatun M, Bruckmaier RM, Thomson PC, House J, García SC. Suitability of somatic cell count, electrical conductivity, and lactate dehydrogenase activity in foremilk before versus after alveolar milk ejection for mastitis detection. J Dairy Sci. 2019;102:9200–12. doi:10.3168/jds.2018-15752.

Khatun M, Clark CEF, Lyons NA, Thomson PC, Kerrisk KL, García SC. Early detection of clinical mastitis from electrical conductivity data in an automatic milking system. Anim. Prod. Sci. 2017;57:1226. doi:10.1071/AN16707.

Hovinen M, Aisla A-M, Pyörälä S. Accuracy and reliability of mastitis detection with electrical conductivity and milk colour measurement in automatic milking. Acta Agric. Scand. - A: Anim. Sci. 2006;56:121–7. doi:10.1080/09064700701216888.

Trilk J, Münch K, Franke C. 4.3 Untersuchungen zur Feststellung von Eutergesundheitsstörungen und Rohmilch-veränderungen mit dem MQC und weiteren technischen Einrichtungen beim Au-tomatischen Melksystem Lely ASTRONAUT®. In: Bewertung der Anwendung Automatischer Melksysteme–Basis für qualitäts-, leistungs-und tier-gerechte Managementempfehlungen. 2006:80.

Rasmussen MD, Bjerring M. Visual scoring of milk mixed with blood. J Dairy Res. 2005;72:257–63. doi:10.1017/S0022029905000853.

Zucali M, Bava L, Tamburini A, Gislon G, Sandrucci A. Association between Udder and Quarter Level Indicators and Milk Somatic Cell Count in Automatic Milking Systems. Animals (Basel) 2021; 11:3485. doi:10.3390/ani11123485.

Khatun M, Thomson PC, Kerrisk KL, Lyons NA, Clark CEF, Molfino J, García SC. Development of a new clinical mastitis detection method for automatic milking systems. J Dairy Sci. 2018;101:9385–95. doi:10.3168/jds.2017-14310.

Hillerton E. Detecting mastitis at cow-side. Proc. 39th Annu. Mtg. Natl. Mastitis Counc., Atlanta GA. Natl. Mastitis Counc., Madison, WI 2000:48–53.

Hogeveen H, Klaas IC, Dalen G, Honig H, Zecconi A, Kelton DF, Sánchez Mainar M. Novel ways to use sensor data to improve mastitis management. J Dairy Sci. 2021;104:11317–32. doi:10.3168/jds.2020-19097.

Sargeant JM, Leslie KE, Shirley JE, Pulkrabek BJ, Lim GH. Sensitivity and specificity of somatic cell count and California Mastitis Test for identifying intramammary infection in early lactation. J Dairy Sci. 2001;84:2018–24. doi:10.3168/jds.S0022-0302(01)74645-0.

Bhutto AL, Murray RD, Woldehiwet Z. California mastitis test scores as indicators of subclinical intra-mammary infections at the end of lactation in dairy cows. Res Vet Sci. 2012;92:13–7. doi:10.1016/j.rvsc.2010.10.006.

Steeneveld W, Kamphuis C, Mollenhorst H, van Werven T, Hogeveen H. The role of sensor measurements in treating mastitis on farms with an automatic milking system. In: Hogeveen H, Lam TJGM, editors. Udder Health and Communication. Wageningen: Wageningen Academic Publishers; 2012. p. 399–406. doi:10.3920/978-90-8686-742-4_76.

Swami SV, Patil RA, Gadekar SD. Studies on prevalence of subclinical mastitis in dairy animals. Journal of Entomology and Zoology Studies. 2017;5:1297–300.

Swain SD, Weathers D, Niedrich RW. Assessing Three Sources of Misresponse to Reversed Likert Items. Journal of Marketing Research. 2008;45:116–31. doi:10.1509/jmkr.45.1.116.

Weijters B, Baumgartner H. Misresponse to Reversed and Negated Items in Surveys: A review. Journal of Marketing Research. 2012;49:737–47. doi:10.1509/jmr.11.0368


Additional Files