Peracetic acid and atmospheric plasma as alternatives for packaging disinfection in the dairy industry
Keywords:
Bacillus subtilis, Aspergillus niger, hydrogen peroxide, packaging material disinfection, germ reduction, seal strength, contact angle measurement, sensory testAbstract
In the dairy industry disinfection of packaging material is an established process step. Nowadays the mostly applied disinfection method of packaging materials and machinery is hydrogen peroxide disinfection. Disinfection with atmospheric plasma and peracetic acid are alternatives. In this study the two hydrogen peroxide disinfection alternatives were evaluated for their antimicrobial effect and their interaction with packaging material and packaged good. To analyze the efficiency of alternative disinfection methods and interactions between packaged goods and packaging materials, films of common coffee cream portion cups were used. The microbial reduction rate was investigated by the wet/dry swap technique (DIN 10113-1: 1997-07) using Bacillus subtilis and Aspergillus niger. Interactions between disinfection method and packaging material were measured by seal strength (DIN 55529:2005-09) and contact angle measurement (DIN 55660-2). Sensory influences on the packaged goods were detected by using the triangle test (DIN EN ISO 4120). Microbial test showed that the microbial reduction rate of atmospheric plasma was lower than the microbial reduction rate of hydrogen peroxide due to the chosen parameters for atmospheric plasma whereas the microbial reduction of peracetic acid was as effective as of hydrogen peroxide. The sensory test showed that the different disinfection methods had no effect on the flavour of packaged goods. Atmospheric plasma caused a considerably smaller contact angle than both chemical disinfection methods. The seal strength test showed no significant difference (P > 0.05) neither between hydrogen peroxide and peracetic acid nor between untreated sample and atmospheric plasma but a significant difference (P < 0.05) between these two groups. In the sealing range of 190 - 240 °C the seal strengths were around 8 N/15mm. The results of atmospheric plasma disinfection showed the need for additional tests with different plasma doses in order to generate a higher microbial reduction rate. Experiments with higher plasma doses also require more tests with regard to the packaging material. Consequently, both disinfection methods could be further investigated as alternatives for disinfection with hydrogen peroxide.
References
Silva RAB, Montes RHO, Richter EM, Munoz RAA. Rapid and selective determination of hydrogen peroxide residues in milk by batch injection analysis with amperometric detection. Food chem 2012;133:200-204.
Folz R. Geschmacks- und biologische Stabilität von Bier in Kunststoffverpackungen. Doctoral Thesis TU Berlin 2010;1:10-19.
Schreiner G, Bube I, Schwabe H. Neue Aspekte zur Peressigsäure - Desinfektion. Fleischmagazin 1999;6:13-17 p. 7.
Muranyi P, Langowski HC, Wunderlich J. Plasmatechnologie – Neue Wege zur Entkeimung von Packstoffmaterialien. Chem-ingtech 2006;78:1697-1706.
Lerouge S, Wertheimer MR, Yahia LH. Plasma Sterilization: A review of parameters, mechanisms, and limitations. Plasmas and polymers 2001;6:175-176.
Meilgaard M, Vance Ceville G, Carr TB. Sensory evaluation techniques. Taylor & Francis 2007;4:65-66.
Wolf D. Probleme und Perspektiven der Nutzung elektrodiaphragmatisch hergestellter Desinfektionsmittel. Doctoral Thesis TU Berlin 2009;1:32-40.
Fachverband Nahrungsmittelmaschinen und Verpackungsmaschinen. Aseptische Verpackungsmaschinen für die Nahrungsmittelindustrie: Mindestanforderungen und Rahmenbedingungen für einen bestimmungsgemäßen Betrieb, ersetzt VDMA 8742. VDMA-Einheitsblatt 2006.
Muranyi P, Wunderlich J, Dobosz M. Sterilisation von Abfüllmaschinen. Standardisierung von Bioindikatoren, Untersuchungsmethoden und Validierungsverfahren. Chem-ingtech 2006;78:1667-1673.
Putt KS, Pugh RB. A high-throughput microtiter plate based method for the determination of peracetic acid and hydrogen peroxide. Plos one 2013;1:1-10.
Mai-Prochnow A, Murphy AB, McLean KM, Kongt MG, Ostrikov K. Atmospheric plasmas: Infection control and bacterial responses. Int j antimicrob agents 2014;43:508-517.
Vandekinderen I, Van Camp J, De Meulenaer B, Veramme K, Bernaert N, Denon Q, et al. Moderate and high doses of sodium hypochlorite, neutral electrolzyed exidizing water, peroxyacetic acid, and gaseous chlorine dioxide did not affect the nutritional
and sensory qualities of fresh-cut iceberg lettuce (tiva var. capitata L.) after washing. J. agr. food chem. 2009;57:4195-4203.
Alvaro JE, Moreno S, Dianez F, Santos M, Carrasco G, Urretarazu M. Effects of peracetic acid disinfectant on the postharvest of some fresh vegetables. J food eng 2009;95:11-15.
López L, Romero J, Ureta F. Disinfection treatment for lettuces (Lactuca sativa) and strawberries (Fragaria Chiloensis). Arch latinoam nutr 2001;51:376-381.
Muranyi P. Einsatz eines Atmosphärendruckplasmas zur Entkeimung von lebensmittelrelevanten Verpackungen aus Kunststoff. Dcotoral Thesis TU München 2008;1:4-197.
Chu PK, Chen JY, Wang LP,HN. Plasma-surface modification of biomaterials. Mater sci eng 2002;10:143-206.
Wintermantel E, Ha S-W. Medizintechnik - Life Science Engineering. Springer Verlag 2009;10:841-842.
Selle M. Immobilisierung von Übergangsmetall-haltigen Komplexen des Phthalocyanin- und des Salen-Typs in mesoporösen Molekurlasieben des Typs MCM-41. Doctoral Thesis University Stuttgart 2000;1:30-140.