Comparison of two teat skin sampling methods to quantify teat contamination

Authors

  • Maria-F. Hohmann
  • Nicole Wente
  • Yanchao Zhang
  • Doris Klocke
  • Volker Krömker

Keywords:

teat end colonization, mastitis pathogens, wet/dry swab technique, dipping technique, microbial load

Abstract

The aim of this research was to compare two sampling methods quantifying
microbial load on teat ends, especially mastitis pathogens originating
from the cows’ surroundings. Methods were compared using
a split udder design, including 132 teat pairs in the study. For the first
method, the wet/dry swab technique, a moistened swab was rotated
360° around the teat end, followed by a dry swab in the same manner.
For the second and new method, the dipping technique, teat ends
were immersed in a cup filled with Ringer’s solution and were removed
after five seconds. Microbial load per milliliter as well as per teat end
was calculated by determining the number of total aerobic mesophilic
bacteria as well as environmental pathogenic bacteria, including coliform
bacteria and esculin-positive streptococci. The concordance correlation
coefficient (CCC) was used to quantify the agreement between
two series of measurements and revealed the following coefficients:
0.112 for total aerobic mesophilic bacteria; 0.008 for coliform bacteria
and 0.001 for esculin positive streptococci. The results of this study
point out that under field conditions, the new method does not provide
similar results when compared with the wet/dry swab technique
for determining teat end microbial load.

References

Seegers H, Fourichon C, Beaudeau F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res. 2003;34(9):475-491.

Hogeveen H, Huijps K, Lam TJGM. Economic aspects of mastitis: New developments. NZ Vet J. 2011;59(1):16-23.

Watts JL. Etiological agents of bovine mastitis. Vet Microbiol. 1988;16(1):41-66.

Makovec JA, Ruegg PL. Results of Milk Samples Submitted for Microbiological Examination in Wisconsin from 1994 to 2001. J Dairy Sci. 2003;86(11):3466-3472.

Haveri M, Hovinen M, Roslöf A, Pyörälä S. Molecular types and genetic profiles of Staphylococcus aureus strains isolated from bovine intramammary infections and extramammary sites. J Clin Microbiol. 2008;46(11):3728-3735.

Rowbotham RF, Ruegg PL. Bacterial counts on teat skin and in new sand, recycled sand, and recycled manure solids used as bedding in freestalls. J Dairy Sci. 2016;99(8):6594-6608.

Pinzón-Sánchez C, Ruegg PL. Risk factors associated with short-term post-treatment outcomes of clinical mastitis. J Dairy Sci. 2011;94(7):3397-3410.

Pankey JW. Premilking Udder Hygiene. J Dairy Sci. 1989;72(5):1308-1312.

Guarín JF, Baumberger C, Ruegg PL. Anatomical characteristics of teats and premilking bacterial counts of teat skin swabs of primiparous cows exposed to different types of bedding. J Dairy Sci. 2017;100(2):1436-1444.

Svennesen L, Nielsen S, Mahmmod Y, Krömker V, Pedersen K, Klaas I. Association between teat skin colonization and intramammary infection with Staphylococcus aureus and Streptococcus agalactiae in herds with automatic milking systems. J Dairy Sci. 2019;102(1):1-11.

Rendos JJ, Eberhart RJ, Kesler EM. Microbial Populations of Teat Ends of Dairy Cows, and Bedding Materials. J Dairy Sci. 1975;58(10):1492-1500.

Paduch JH, Mohr E, Krömker V. The association between teat end hyperkeratosis and teat canal microbial load in lactating dairy cattle. Vet Microbiol. 2012;158(3-4):353-359.

De Visscher A, Supre K, Haesebrouck F, Zadoks RN, Piessens V, Van CoillieE et al. Further evidence for the existence of environmental and host-associated species of coagulase-negative staphylococci in dairy cattle. Vet Microbiol. 2014;172:466-474.

Baumberger C, Guarín JF, Ruegg PL. Effect of 2 different premilking teat sanitation routines on reduction of bacterial counts on teat skin of cows on commercial dairy farms. J Dairy Sci. 2016;99(4):2915-2929.

Verdier-Metz I, Gagne G, Bornes S, Monsallier F, Veisseire P, Delbes-Paus, C, et al. Cow teat skin, a potential source of diverse microbial populations for cheese production. Appl Environ Microbiol. 2012;78(2):326-333.

De Vliegher S, Laevens H, Devriese LA, Opsomer G, Leroy JLM, Barkema HW et al. Prepartum teat apex colonization with Staphylococcus chromogenes in dairy heifers is associated with low somatic cell count in early lactation. Vet Microbiol. 2003;92(3):245-252.

Paduch JH, Krömker V. Besiedlung von Zitzenhaut und Zitzenkanal laktierender Milchrinder durch euterpathogene Mikroorganismen. [Colonization of the teat skin and the teat canal by mastitis pathogens in dairy cattle.] Tierarztl Prax. Ausgabe Grosstiere - Nutztiere. 2011;39(2):71-76.

Pfannenschmidt F. Eignung des Nass-Trockentupfer Verfahrens (NTT) DIN 10113; 1997-07 zur Bestimmung des Hygienestatus in Melkanlagen [dissertation]. Tierärztliche Hochschule Hannover, 2003.

Paduch JH, Mohr E, Krömker V. The association between bedding material and the bacterial counts of Staphylococcus aureus, Streptococcus uberis and coliform bacteria on teat skin and in teat canals in lactating dairy cattle. J Dairy Res. 2013;80(2):159-164.

Guarín JF, Ruegg PL. Short communication: Pre- and postmilking anatomical characteristics of teats and their associations with risk of clinical mastitis in dairy cows. J Dairy Sci. 2016;99(10):8323-8329.

Lin LI-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics. 1989;45:255-268.

Watson PF, Petrie A. Method agreement analysis : A review of correct methodology. Theriogenology. 2010;73(9):1167-1179.

Koch R, Spoerl E. Statistische Verfahren zum Vergleich zweier Messmethoden und zur Kalibrierung: Konkordanz-, Korrelations- und Regressionsanalyse am Beispiel der Augeninnendruckmessung. [Statistical Methods for Comparison of Two Measuring Procedures and for Calibration: Analysis of Concordance, Correlation and Regression in the Case of Measuring Intraocular Pressure.] Klin Monatsbl Augenheilk. 2007;224:52–57.

McBride G. A proposal for strength-of-agreement criteria for Lin’s Concordance Correlation Coefficient. NIWA Client Rep. 2005;45(1):307-310.

Monsallier F, Verdier-Metz I, Agabriel C, Martin B, Montel MC. Variability of microbial teat skin flora in relation to farming practices and individual dairy cow characteristics. Dairy Sci Technol. 2012;92(3):265-278.

Guarín JF, Baumberger C, Ruegg PL. Anatomical characteristics of teats and premilking bacterial counts of teat skin swabs of primiparous cows exposed to different types of bedding. J Dairy Sci. 2017;100(2):1436-1444.

Cullen GA, Hebert CN. Some ecological Observations on Microorganisms inhabiting Bovine Skin, Teat Canals and Milk. Br Vet. J. 1967;123(1):14-25

De Vliegher S, Opsomer G, Vanrolleghem A, Devriese LA, Sampimonc OC, Sol J, et al. In vitro growth inhibition of major mastitis pathogens by Staphylococcus chromogenes originating from teat apices of dairy heifers. Vet Microbol. 2004;101(3):215-221.

Merli D, Amadasi A, Mazzarelli D, Cappella A, Castoldi E, Ripa S, et al. Comparison of Different Swabs for Sampling Inorganic Gunshot Residue from Gunshot Wounds: Applicability and Reliability for the Determination of Firing Distance. J. Forensic Sci. 2018;24:1-7.

Downloads

Published

2020-03-18