Herd-related risk factors associated with the severity of clinical mastitis and the incidence of severe mastitis in German dairy herds
Schlagworte:
bovine mastitis, severity score, risk factors, severe mastitis, cow-years at risk, incidenceAbstract
Severe mastitis can result in a range of serious general health complications for the infected dairy cow, including septicemia, which can ultimately lead to death. This cross-sectional study aimed firstly to identify the herd-level risk factors associated with severe clinical mastitis (CM) in the diseased dairy cow. The second aim was to investigate herd-related factors associated with the incidence of severe mastitis in the dairy herd. The study was conducted on dairy farms (n = 58) in Northwestern Germany. In addition to data from dairy herd improvement (DHI) tests, possible herd-related predictors were collected on dairy farms. The most frequently isolated pathogens among all CM cases in this study were coliform bacteria (32.6 %), followed by Streptococcus (Str.) uberis (17.2 %). Mastitis cases in clean dairy herds (in > 80.0 % of the examined udders ≤ 10.0 % of the udder surface was soiled), in dairy herds with > two milkings per cow and day, and in herds with a new infection risk (NIR) during the dry period ≤ 28.0 % in the last DHI test prior to CM were identified as herd-related factors associated with more severe CM in the diseased dairy cow. The group of causative pathogens in mastitis cases was another risk factor positively associated with severe CM in the diseased dairy cow. Mastitis caused by coliform pathogens was more likely to be severe than mastitis caused by other pathogens. The mean incidence for severe mastitis in this study was 4.1 severe cases per 100 cow years at risk. The herd milk protein content based on the average of all DHI tests was significantly associated with the incidence of severe mastitis, such that dairy herds with a lower herd milk protein content < 3.4 % were associated with a higher incidence of severe mastitis.
Literaturhinweise
DVG (Deutsche Veterinärmedizinische Gesellschaft [German Veterinary Association]). Leitlinien zur Bekämpfung der Mastitis des Rindes als Bestandsproblem [Guidelines for combating bovine mastitis as a herd problem], 2012, 5th edition. Gießen, Germany: Deutsche Veterinärmedizinische Gesellschaft (DVG), An der Alten Post 2, D-35390 Gießen.
Fredebeul-Krein F, Schmenger A, Wente N, Yanchao Z, Krömker V. Factors associated with the severity of clinical mastitis. Pathogens, 2022; 11(10): 1089. https://doi.org/10.3390/pathogens11101089
Schmenger A, Krömker V. Characterization, cure rates and associated risks of clinical mastitis in Northern Germany. Veterinary Sciences, 2020; 7: 170. https://doi.org/10.3390/vetsci7040170
IDF (International Dairy Federation). Suggested interpretation of mastitis terminology. Bulletin of the IDF, 1999; 338, Brussels, Belgium.
Brennecke J, Falkenberg U, Wente N, Krömker V. Are severe mastitis cases in dairy cows associated with bacteremia? Animals, 2021; 11(2): 410. https://doi.org/10.3390/ani11020410
Wenz JR, Barrington GM, Garry FB. Bacteremia associated with naturally occurring acute coliform mastitis in dairy cows. Journal of the American Veterinary Medical Association, 2001(7); 219: 976–981.
McDougall S, Agnew KE, Cursons R, Hou XX, Compton CRW. Parenteral treatment of clinical mastitis with tylosin base or penethamate hydroiodide in dairy cattle. J Dairy Sci, 2007; 90(2): 779-789. https://doi.org/10.3168/jds.S0022-0302(07)71562-X
Rees A, Fischer-Tenhagen C, Heuwieser H. Udder firmness as a possible indicator for clinical mastitis. J Dairy Sci, 2017; 100(3): 2170-2183. https://doi.org/10.3168/jds.2016-11940
Kuipers A, Koops WJ, Wemmenhove H. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J Dairy Sci, 2016; 99(2): 1632–1648. https://doi.org/10.3168/jds.2014-8428
Oliveira L, Ruegg PL. Treatments of clinical mastitis occurring in cows on 51 large dairy herds in Wisconsin. J Dairy Sci, 2014; 97(9): 5426–5436. https://doi.org/10.3168/jds.2013-7756
Oliveira L, Hulland C, Ruegg PL. Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J Dairy Sci, 2013; 96(12): 7538–7549. https://doi.org/10.3168/jds.2012-6078
Verbeke J, Piepers S, Supre K, De Vliegher S. Pathogen-specific incidence rate of clinical mastitis in Flemish dairy herds, severity, and association with herd hygiene. J Dairy Sci, 2014; 97(11): 6926-6934. https://doi.org/10.3168/jds.2014-8173
Bradley AJ, Green MJ. Aetiology of clinical mastitis in six Somerset dairy herd. Veterinary Record, 2001; 148: 683-686. https://doi.org/10.1136/vr.148.22.683
Burvenich C, Van Merris V, Mehrzad J, Diez-Fraile A, Durchateau L. Severity of E. coli mastitis is mainly determined by cow factors. Veterinary Research, 2003; 34: 521-564. https://doi.org/10.1051/vetres:2003023
Vangroenweghe F, Lamote I, Burvenich C. Physiology of the periparturient period and its relation to severity of clinical mastitis. Domestic animal endocrinology, 2005; 29(2): 283-293. https://doi.org/10.1016/j.domaniend.2005.02.016
Smith KL, Todhunter DA, Schoenberger PS. Environmental mastitis: Cause, prevalence, prevention. J Dairy Sci, 1985; 68(6): 1531-1553. https://doi.org/10.3168/jds.S0022-0302(85)80993-0
Weiss WP. Nutritional influences on the prevalence and severity of mastitis in dairy cows. NMC Conference, Wilkes-Barre, 2009; 44-54.
Bradford BJ, Yuan K, Farney JK, Mamedova LK, Carpenter AJ. Invited review: Inflammation during the transition to lactation: New adventures with an old flame. J Dairy Sci, 2015; 98(10): 6631-6650. https://doi.org/10.3168/jds.2015-9683
Horst EA, Kvidera SK, Baumgard LH. Invited review: The influence of immune activation on transition cow health and performance—A critical evaluation of traditional dogmas. J Dairy Sci, 2021; 104(8): 8380-8410. https://doi.org/10.3168/jds.2021-20330
Zerbe H, Schneider NR, Leibold W, Wensing T, Kruip TAM, Schuberth HJ. Altered functional and immunophenotypical properties of neutrophilic granulocytes in postpartum cows associated with fatty liver. Theriogenology, 2000; 54(5): 771-786. https://doi.org/10.1016/S0093-691X(00)00389-7
Kremer WDJ, Noordhuizen-Stassen EN, Grommers FJ, Schukken YH, Heerings R, Brand A. Severtiy of experimental Escherichia coli Mastitis in ketonemic and nonketonemic dairy cows. J Dairy Sci, 1993; 76(11): 3428-3436. https://doi.org/10.3168/jds.S0022-0302(93)77681-X
van Knegsel ATM, de Vries Reilingh G, Meulenberg S, van den Brand H, Dijkstra J, Kemp B, Parmentier HK. Natural antibodies related to energy balance in early lactation dairy cows. J Dairy Sci, 2007; 90(12): 5490-5498. https://doi.org/10.3168/jds.2007-0289
Barkema HW, Schukken YH, Lam TJGM, Beiboer ML, Benedictus G, Brand A. Management practices associated with the incidence rate of clinical mastitis. J Dairy Sci, 1999; 82(8): 1643-1654. https://doi.org/10.3168/jds.S0022-0302(99)75393-2
Kurjogi MM, Kaliwal BB. Epidemiology of bovine mastitis in cows of Dharwad District. Hindawi. 2014, 1-9.
Ward WR, Hughes JW, Faull PJ, Cripps PJ, Sutherland JP, Sutherst JE. Observational study of temperature, moisture, pH and bacteria in straw bedding, and faecal consistency, cleanliness and mastitis in cows in four dairy herds. Veterinary Record, 2002; 151(7): 199–206. https://doi.org/10.1136/vr.151.7.199
Cheng WN, Han SG. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments – a review. Asian-Australas Journal of Animal Sciences, 2020; 33(11): 1699-1713. https://doi.org/10.5713/ajas.20.0156
Summer A, Lora I, Formaggioni P, Gottardo F. Impact of Heat Stress on Milk and Meat Production. Animal Frontiers, 2019; 9(1): 39–46. https://doi.org/10.1093/af/vfy026
Dahl GE, Tao S, Laporta J. Heat stress impacts immune status in cows across the life cycle. Frontiers in Veterinary Science, 2020; 7: 116. https://doi.org/10.3389/fvets.2020.00116
Neculai-Valeanu AS, Ariton AM. Udder Health Monitoring for Prevention of Bovine Mastitis and Improvement of Milk Quality. Bioengineering, 2022; 9(11): 608. https://doi.org/10.3390/bioengineering9110608
Hogan JS, Smith KL, Hoblet KH, Todhunter DA, Schoenberger PS, Hueston WD, Pritchard DE, Bowman GL, Heider LE, Brockett BL, Conrad HR. Bacterial counts in bedding materials used on nine commercial dairies. J Dairy Sci, 1989; 72(1): 250-258. https://doi.org/10.3168/jds.S0022-0302(89)79103-7
Schukken YH, Günther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth HJ, Sipka A, Smith DGE, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert HM, Pfizer Mastitis Research Consortium. Host-response patterns of intramammary infections in dairy cows. Veterinary immunology and immunopathology, 2011; 144(3): 270-289. https://doi.org/10.1016/j.vetimm.2011.08.022
Adlam C, Kerry JB, Edkins S, Ward PD. Local and systemic antibody responses in cows following immunization with staphylococcal antigens in the dry period. Journal of Comparative Pathology, 1981; 91(1): 105-113. https://doi.org/10.1016/0021-9975(81)90050-5
Cullor JS. The Escherichia coli J5 vaccine: investigating a new tool to combat coliform mastitis. Veterinary medicine, 1991; 86: 836-844.
Jahresbericht 2020, Landeskontrollverband Nordrhein-Westfalen e.V. [cited 2023 February 8]. Available from: https://www.lkv-nrw.de/fileadmin/redaktion/Publikationen/Jahresberichte/LKV-Jahresbericht_2020.pdf
Heeschen W, Reichmuth J, Tolle A, Zeidler H. The preservation of milk samples for bacteriological, cytological and inhibitory biological examination. Milchwissenschaft, 1969; 24: 729-734.
GVA (German Veterinary Association). Guidelines for antiseptic milk sampling and guidelines to isolate and identify mastitis pathogens, 2018, 3rd edition. Gießen, Germany: German Veterinary Association (GVA), Friedrichstraße 17, D-35392 Gießen. ISBN 3863454545.
Mansion-de Vries EM, Hoedemaker M, Krömker V. Aspekte einer evidenzbasierten Therapie klinischer Mastitiden. Tierärztliche Praxis Ausgabe G: Großtiere/Nutztiere, 2015; 43(5): 287-295. https://doi.org/10.15653/TPG-150227
Schreiner DA, Ruegg PL. Effects of tail docking on milk quality and cow cleanliness. J Dairy Sci, 2002; 85(10): 2503-2511. https://doi.org/10.3168/jds.S0022-0302(02)74333-6
Schreiner DA, Ruegg PL. Relationship between udder and leg hygiene scores and subclinical mastitis. J Dairy Sci, 2003; 86(11): 3460-3465. https://doi.org/10.3168/jds.S0022-0302(03)73950-2
National Mastitis Council. Laboratory Handbook on Bovine Mastitis, 2017, 3rd edition. Verona, WI, USA: National Mastitis Council.
Watts JL, Salmon SA, Yancey JR Jr. Use of modified Rambach agar to differentiate Streptococcus uberis from other mastitis streptococci. J Dairy Sci, 1993; 76(6): 1740–1743. https://doi.org/10.3168/jds.S0022-0302(93)77506-2
DLQ (German Association for Performance and Quality Testing). DLQ-Richtlinie 1.15: Zur Definition und Berechnung von Kennzahlen zum Eutergesundheitsmonitoring in der Herde und von deren Vergleichswerten, 2014; DLQ guideline 1.15, Bonn, Germany [cited 2023 March 06]. Available from: https://infothek.die-milchkontrolle.de/wp-content/uploads/2018/08/DLQ-Richtlinie-1.15-vom-17.11.2014.pdf
Santman-Berends IMGA, Lam TJGM, Keurentjes J, Van Schaik G. An estimation of the clinical mastitis incidence per 100 cows per year based on routinely collected herd data. J Dairy Sci, 2015; 98(10): 6965-6977. https://doi.org/10.3168/jds.2015-9642
Bausewein M, Mansfeld R, Doherr MG, Harms J, Sorge US. How good is the detection of clinical mastitis in automated milking systems? Gießen/München, Germany: Proc AG Eutergesundheit German Veterinary Association (GVA); 2022; 61–63. ISBN 978-3-86345-616-0.
Rasmussen MD, De Blom JY, Nielsen LAH, Justesen P. The impact of automatic milking on udder health. Proceedings of the 2ⁿd International Symposium on Mastitis and Milk Quality, 2001; 397-400.
Arvidson A, Ekman T Emanuelson U, Gustavsson AH Sandgren CH Persson Waller K Svensson K. Feeding factors associated with clinical mastitis of first parity cows. Wageningen, Netherlands: Mastitis in dairy production: current knowledge and future solutions; 2005; 629–634. ISBN 9076998701.
Nyman AK, Ekman T, Emanuelson U, Gustafsson AH, Holtenius K, Persson Waller K, Hallen Sandgren C. Risk factors associated with the incidence of veterinary-treated clinical masititis in Swedish dairy herds with high milk yield and low prevalence of subclinical mastitis. Preventive Veterinary Medicine. 2007; 78(2): 142-160. https://doi.org/10.1016/j.prevetmed.2006.10.002
Wilkinson JM. Silage and animal health. Natural toxins, 1999; 7(6): 221–232. https://doi.org/10.1002/1522-7189(199911/12)7:6<221::AID-NT76>3.0.CO;2-H
Nyman AK. Epidemiological studies of the risk factors for bovine mastitis. Uppsala, 2007; 80: 1-53.
Pearson JKL, Mackie DP. Factors associated with the occurrence, cause and outcome of clinical mastitis in dairy cattle. Veterinary Record, 1979; 105: 456–463.
Schukken YH, Grommers FJ, van de Geer D, Erb HN, Brand A. Risk factors for clinical mastitis in herds with a low bulk milk somatic cell count. 2. Risk factors for Escherichia coli and Staphylococcus aureus. J Dairy Sci, 1991; 74(3): 826–832. https://doi.org/10.3168/jds.S0022-0302(91)78231-3
Saloniemi H. Udder disease in dairy cows—field observations on incidence, somatic cell and environmental factors and control. Journal of the Scientific Agricultural Society of Finland, 1980; 52(2): 85–184.
Smith KL, Hogan JS, Weiss WP. Dietary vitamin E and selenium affect mastitis and milk quality. Journal of Animal Science, 1997; 75: 1659–1665. https://doi.org/10.2527/1997.7561659x
Shuster DE, Lee EK, Kehrli ME. Bacterial growth, inflammatory cytokine production, and neutrophil recruitment during coliform mastitis in cows within ten days after calving, compared with cows at midlactation. Veterinary Research, 1996; 57(11): 1569–1575.
Suriyasathaporn W, Schukken YH, Nielen M, Brand A. Low somatic cell count: a risk factor for subsequent clinical mastitis in a dairy herd. J Dairy Sci, 2000; 83(6): 1248–1255. https://doi.org/10.3168/jds.S0022-0302(00)74991-5
Kurek C. Presence of coryneform organisms I in cow udders. III. Fermentation and hemagglutination properties as well as pathogenicity of C. uberis. Polskie Archiwum Weterynaryjne, 1975; 18(1): 53–62.
Nagasawa Y, Kiku Y, Sugawara K, Yabusaki T, Oono K, Fujii K, Suzuki T, Meahana K, Hayashi T. The bacterial load in milk is associated with clinical severity in cases of bovine coliform mastitis. Journal of Veterinary Medical Science, 2019; 81(1): 107-112. https://doi.org/10.1292/jvms.18-0581
Wenz JR, Barrington GM, Garry FB, Ellis RP, Magnuson RJ. Escherichia coli isolates’ serotypes, genotypes, and virulence genes and clinical coliform mastitis severity. J Dairy Sci, 2006; 89(9): 3408-3412. https://doi.org/10.3168/jds.S0022-0302(06)72377-3
Bruckmaier R. Synthese der Milchproteine. In: Von Engelhardt W, Hrsg. Physiologie der Haustiere. 4. Auflage. Enke; 2014. S. 613. ISBN 978-3-8304-1259-5.
Martin R, Mansfeld R, Hoedemaker M, De Kruif A. Zusammenhänge zwischen Fütterung und Milchinhaltsstoffen. In: De Kruif A, Mansfeld R, Hoedemaker M, Hrsg. Tierärztliche Bestandsbetreuung beim Milchrind. 3. Auflage, Enke; 2014. S. 148-150. ISBN 978-3-8304-1175-8.
Davies PL, Leigh JA, Bradley AJ, Archer SC, Emes RD, Green MJ. Molecular epidemiology of Streptococcus uberis clinical mastitis in dairy herds: strain heterogeneity and transmission. Journal of clinical microbiology, 2016; 54(1): 68-74. https://doi.org/10.1128/JCM.01583-15
Downloads
Veröffentlicht
Ausgabe
Rubrik
Lizenz
Copyright (c) 2023 Milchwissenschaft - Milk Science International
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.